This is a continuation of the original post
Finally had some time to look this one over. As you hopefully recall in the previous installment I mentioned how I noticed data fluctuation in the same area of the page for 32 bit builds of Windows 7 (haven't checked 8 for either build yet).
As I guessed it's pretty much the same functionality (garbage stack portion) and can be used to infer /debug. This is the mode where a kernel debugger is not necessarily attached, but can be at anytime. Other indicators such as KdDebuggerEnabled at 0x2D4 or KdDebuggerNotPresent which as you know can be queried with NtQuerySystemInformation will not be of any value.
Anyways in this case, it's close to the same but not entirely. KdInitSystem parses the load options, if /debug is set, we expand our stack further than anticipated for a normal boot phase and land at DbgLoadImageSymbols which uses int 2D (debugger services, like symbols ;p) regardless of whether or not a KD is actually present, if not it's just caught by exception handlers in this case.
Now since we grew the stack quite a bit, and the stack pages were zeroed to begin with, we find ourselves at KiInitializeXStatePolicy. This function writes vendor specific extended processor feature bits into the shared page. It allocates a good 0x450 bytes, which then uncovers the garbage left behind (or is it?) from the DbgLoadImageSymbols interrupt control transfer and exception dispatch.
If the value at 0x4C0 is non-zero, this is enough to indicate. It is highly improbable that the Xsave features will extend that far, but starting at Xsave and searching at a 4 byte boundary for 0xFFFFFD34 would be a more appropriate solution. Similar to the 4 byte 'DBGP' signature for 64 bit builds.
This applies to an original deployed 32 bit copy, all the way to the most recent Windows updates.
Keep in mind this is only for 32 bit builds of Windows 7. The same deal exists in x86/64 targets but is a slightly different story.
No comments:
Post a Comment